
7RD-ft" 28 REIFICRIO WITHOUT EYRURTION(U) rASSACHUSETTS INST OF 1/:L
TECH CUZDGE ARTIFICIRL INTELLIGENCE LUN R MEN
JUN 60 RI-M-946 NM14-5-K-0-0124
UNCLRSSFIEID)F/O 12/5 M

mhhh*Ahhmhhh
I..'momol

sonU

28p

L5.0

12.2

11111.25 "IIi*. 11111.6

-il ,_...__ i I.

MjC' nCOPY R'S"T.Ul rN TEST CHART
rS 1963

I,

% % #

I

REPORT DOCUMENTATION PAGE READ INSTRUCTION5s " 1

BEFORE COMPLETING FORM
RIEPORT -- Ul@E

I
I. GOVT ACCESSION NO. 1. RECIPI1NTS CATALOG NUMUER

jAI Memo 946 1
4 ITO T.L E (and Su bfifle) . TYPE O Ir REPO RT a PI RIOO CO VEREO

Reification without Evaluation memorandum

S. PERFORMING ORG. REPORT NUMIGR

7. AUT,4OR(4j 6. CONTRACT OR GRANT NUMUERl()

N00014-85-K-0124Alan Bawden

00 9. PERFORMING ORGANIZATION NAME ANO AOORESS 10. PROGRAM ELEMENT PROJECT. TASK

Artificial Inteligence Laboratory AREA & WORK UNIT NuMBERS

'' 545 Technology Square

0 Cambridge, MA 02139

L $I 1, CONTROLLINO OFFICE NAME ANO ADDRESS 12. REPORT DATE

Advanced Research Projects Agency June 1988
oe 1400 Wilson Blvd. 12. NUMBER Oi PAGES

Arlington, VA 22209 26
14 MONITORING AGENCY NAME & AOORSS(el Ifferent ftm C..uwIlinIt Offic) IS. SECURITY CLASS. (o11 reortN)
Office of Naval Research

I Information Systems
Arlington, VA 22217 Is,. DECL.AI FICATION/OOWNGNAOING

I. OISTRIBUTION STATEMENT (ol #hie Reort)

Distribution is unlimited.

1. I U I STMNT lot SWe eeewee entoed In Block i, Affee m A hi DTa
S'LECTE

9A

Is. SUPPLEMENT ARY NOTERS462?*

None

19. KEY W0DS (CeMlInu. .. aeere. sldel I Peee W d Ideiny •? bltk linbet)

reification - meta.representation

reflection continuation-passing

3-Lisp

introspection

20. ABSTRACT (CImen inee eie II u...e.inp d Illtl Ip W l& i|

o%

DD , °', 1473 EoIoN oi I Nov 69 is onsoLeTE UNCLASSIFIED
S/M o002-014-SS01 1

SECURITY CLASSIFICATION OF THIS PAG (1PA e Data terw

.~ ~ ~ ~~~~~~~0 or:* .-~.~S %.r.-we4S % ~

ti

MASSACIIUSETTS INSTITUTE OF TECHNOLOGY

AR'IICIAL INTELLIGENCE LABORATORY

A.I. Memo 946 June 1988

Reification without Evaluation

Alan Bawden

Abstract -... _____'-.F_

Constructing self-referential systems, such as Brian Smith's 3-Lisp
language, is actually more straightforward than you think. Anyoew
can build an infinite tower of processors (where each processor ih- L
plements the processor at the next level below) by employing some ;,., '.- .
common sense and one simple trick. In particular, it is not necessary ft
to re-design quotation, take a stand on the relative merits of evalu-
ation vs. normalization, or treat continuations as meta-level objects. By..-.
This paper presents a simple programming language interpreter that D!,
illustrates how this can be done. By keeping its expression evalua-
tor entirely separate from the mechanisms that implement its infinite t.i:v '.,,.e
tower, this interpreter avoids many troublesome aspects of previous -

self-referential programming lnguages. Given these basically straight- C
forward techniques, processor towers might be easily constructed for /
a wide variety of systems to enable them to manipulate and reason
about themselves.

This report, describes research done at, tie Artificial Intelligence Laboratory of the

Massachusetts Institute of Technology. Support for the laboratory's artificial intel-
ligence research is provided in part by the Advanced Research Projects Agency of

the Department of Defense under Office of Naval Research contract N00014-85-K-

0124.

This is a revision of a paper that will appear in the Proceedings of the 1988 AC3
Conference on Lisp and Functional Prograintning.

t @1988 Association for Computing Machinery.

--,, , *.,"-~

I

1 Introduction

In [4], and [5], Smith presents the 3-Lisp language as an example of an archi-
tecture that supports self-referential properties in a programming language.
3-Lisp is a significant departure from traditional Lisp dialects. Even before
self-referential mechanisms are introduced, Smith engages in a reconstruc-
tion of Lisp's notions of evaluation and quotation. Then self-reference is
introduced through the mechanism of a "tower" of processors--eacll proces-
sor runs an interpreter to ihplement the processor at the next level below.
Each step in the development of 3-Lisp raises interesting questions about
programming language design and implementation.

In [2] and [7] Wand and Friedman set an excellent example by attempting
to dissect the 3-Lisp language into parts. In [2] the notion of "reification",
the mechanism by which the state of a process is made available to the
process itself, is separated from the rest of the mechanisms of 3-Lisp. In [7]
they show how to add a tower of interpreters to their model. All of this is
done without a reconstruction of evaluation and quotation.

The construction of towers of processors seems like it might be a pronis-
ing technique for constructing systems that have flexible access to their own
implementation, but two aspects of such towers as constructed by Smith
and Wand and Friedman are troublesome: First, they rely on expressions
and environments as the basic language for describing processes. Second,
continuations are treated as second-class objects and are overloaded with an
additional role as agents for shifting between levels of the tower.

In this paper I will examine these problems in detail, relying on Wand

and Friedman's interpreters to illustrate the difficulties. Then I will show
how these problems can be addressed by exhibiting an infinite tower of
processors in which expressions are not explicitly manipulated, and in which
continuations are not used for level-shifting. This will demonstrate that
reification and the notion of a tower of processors are independent of the
notion of a Lisp expression interpreter.

The resulting laligage, written in Scheme [3], is called "Stepper".

2 Expressions and environments

In [2]. Wand and Fried man describe tlheir languiage "Brown", as t denmon-
stration of how the data structurs of an interpreter can be made available
to the progia::, it is interpreting. In essence this is an implementation of

M

,,fexprs" with two a~dd it a ial featurc'-: l'irt, 11rowii's fexprs i(eceiVe it ('(it-

tiniuation as an exlicit argunicnt, in addit ion to receiving aii expressioni
and anl environment. Second, lirown's Irtx.xprs -;n lbe passed as arg ments to
othcr procedures as if they were ordinary' procedures.

Ini addition, the representation of an environ ment used by Brown is pro-
Luduial. Thiub it. is puobbie to call the Brown evaluator with all environmnent
that performs some arb~itrary comp~utation when a variable is accessed.P

Brown is am important step in dissecting 3-Lisp because it seplarates
reification from the notion of a tower of inlterp~reters, an(I because it supp~orts
reificat ion without resortinug to a 2-Lisp-st vie reorganization of Lisp. Thiis
is especially important b~ecause Brown almost precisely seplarates out the
objectionable features of :3-Lisj): the introdluct ion of a fexpr nieclianiisi,
and the secondl-class treatimnt of cont inuiations.

By exainning the Brown theory of reification, which seemns to b~e a faith-i
ful modlel of 3-Lisp's reificationt, we ciin hope to learn how to replace that
part of 3-Lisp with something less objectionabL. WVe mnight learn how to
construct something like the 3-Lisp tower of processors in wvhich a reify-
ing procedure sees some (data struct ures that are more well-behaved than
expressions and environments, %

We will deal with the issue of continuations in more detail in the next
section, since Brown's treatment of continuations changed in [7] when a
tower of interpreters was introduced. For the moment it suffices to observe
that continuations do not play a very important role in this original version
of Brown. They serve as a second examp~le, after environments, wvhere Wand
andl Friedmnan have made design choices ab~out the representation of reified
Objec ts, but coat ill na'tion)s (10 iiot need to lie lbe reihled at the sanif til
enivironments are, nor is it eveni necessary for the iinplenmentation of Brown
to Spend as nmuch I i titas it (10es worryi mig a bout nmanaginig theml.

To see this niore clearly, observe that the interpreter's owvn p~rocedures
pass explicit continuationis amiong tlieviselves solely so that they canl easily
IIe passed onl to reifiers. 'Ilie interpreter 1 irocedutres ;, re alway' s ca reful to call
each other tail-recursive]ly ; the saine implicit continuation is always passed
fromn one interpreter lpro(:edl re to anot hier. Since the implicit continuations
aren't being used for anyt hing, it is ii easy exercise t~o re-write this version
of lBrown so tha t it ielies onl imp licit coit inuiations. a mm uses the orii nmry
Scheme c-alling nueclianiisiun to return values.

This chlanges tHie pirotocol for mciir 1 so that. ins.teid o I in vok inig allei
plicitly passed countinuiation11 in order to rettinni a valuec, they inust rtunthe
valule in the or-dinary way (to tHeir imlpicit v passed] comitiiiimition). Almost

2"

I'1

all the reifiers in [2] can be easily rewritten to use this new protocol. The
only exception is call/cc, which must now be provided as a primitive, im-

plemented using the host language ersion of call/cc. Having provided
call/cc, any other reifiers that need expiicit access to continuations need
only call it.

This change would avoid several embarrassing issues, such as what should

happen when a reifier returns a value instead of invoking its continuation.
These issues are acknowledged in [2] as alternative design choices in the
representation of continuations. To re-write Brown in this manner would
shift these issues to being design choices in call/cc, which is where we are

used to encountering them.
Separating the mechanism for reifying continuations from the mecha-

nism for reifying expressions and environments would be an improvement
to Brown as a programming language, although it would no longer be quite
as faithful a reproduction of 3-Lisp's theory of reification. It only makes

sense to lump continuations together with expressions and environments,

as Brown and 3-Lisp do, if you believe that continuations rightfully belong
to the interpreter. If, on the other hand, you believe continuations should
be first-class objects that can be safely manipulated by ordinary program-
mers (unlike expressions and environments, which can easily be misused),
and which belong to the running program just as much as the ordinary

arguments to a procedure do, then it seems most inappropriate that the
same primitive mechanism is used to obtain access to both continuations
and expressions and environments.

We now turn to the representations used in Brown for expressions and

environments. Expressions are represented in the traditional manner as Lisp

lists and symbols. Environments are represented as a procedure that takes
an identifier and returns an L-value. An L-value is simply an ordinary cons-
cell whose car contains the value. This is a departure from 3-Lisp where

environments are represented using an ordinary A-list.
Brown's procedural representation of environments results in a certain

aunount of complexity, due to the different calling conventions used by
Scheme and Brown. A benefit of this representation is the ability to rull

some arbitrary code whenever a variable is referenced. This does give reify-

ing procedures some additional leverage in controlling the actions of the
evaluator.

Greater leverage could be obtained by representing L-values procedu-

rally as well. This would enable reading a variable to he distinguished from
writing a, variable. Even more interesliig effects inight be obtained by rep-

-} .V .

exercises in procedural representation have to do with the study of reifying
interpreters.

If an inter)reter uses simple A-lists for environments, as 3-Lisp does,
then reifying an environment becomes quile straightforward-no conversion
is required at all. Other representations will have other capabilities, and will
require more complex conversions. It is an initeresting observation thai lafrLf
flexible representations will allow the user correspoidingly greater control
over the interpreter. However, given that 3-Lisp exhibits the l)henomena we
are interested in studying with o t resorting to procedlural representations, it
seems to be an unnecessary distraction for Brown to do so.

A version of the original Brown interpreter which was re-written to elim-
inate explicit continuations, and in which environments were represented as
simple A-lists, would be extremelv plain. There would only be two dif-
ferences between "Simplified Brown" aid ordinary Scheme: (1) Simplified
Brown would have a ieclhanism for definiig new special forms as reifying

)rocedures, aid (2) in Simplified Brown such reifying procedures could be
passed as arguments to other procedures. The former is a desirable property
for a language to have (if it can be achieved without compromising other
aspects of the language), but the latter property is of questionable value.
In most other dialects of Lisp it is possible to statically determine which
occurrences of an identifier signal special syntax. Eliminating this ability
leads to behavior such as that demonstrated in the following dialog with
Brown:

0-> (set! quote
(make-reifier

(lambda (e r k) (k (car e)))))
0:: #<Procedure QUOTE>

0-> (set! call (lambda (f x) (f x)))
0:: #<Procedure CALL>

0-> (call car '(1 2 3))
0:: 1
0-> (call quote '(1 2 3))
0:: X

After defining the procedure quote a.s a reifier, we define a)rocedure call,
which applies its first argument, a omie arguineint procedure, to its second.
Call functions as expecled whei applied to ordinary)rocedures such as
car, but when passed a reifier such as quote as an arguimenit, its behavior

)-

is surprising, and quite unpredictable without examining exactly how call
was defined. This extreme violation of procedural abstraction is surely the
most distressing effect of the kind of reification used by 3-Lisp and Brown.
(It is true that this example does not have a direct analog in 3-Lisp due to
the way quotation works there, but examples of a similar character can be
constructed for 3-Lisp.)

Thus if we leave aside the interesting, but irrelevant, technique of repre-
senting environments procedurally, there isn't much about Brown to recom-
mend it as a programming language. It does allow the definition of new spe-
cial forms in the Brown language itself, but the ability to pass the resulting
reifying procedures as arguments is dangerously uncontrolled. Furthermore,

continuations, which should be treated as first-class objects, are maltreated

by combining the primitive mechanism for obtaining a continuation with
the one for obtaining the much more hazardous expressions and environ-
ments. Since Brown was designed to behave like 3-Lisp in these aspects,
these problems with Brown are problems with 3-Lisp as well.

3 Continuations that shift levels

In (7), Wand and Friedman give a denotational account of a tower of pro-

cessors. They show how one can construct an infinite tower of interpreter
continuations by using the standard fixpoint combinator. An implementa-

tion of an infinite tower of interpreters for the Brown language, based on
this construction, is presented.

Although [7] is primarily concerned with the denotational semantics of
an infinite tower of interpreters, the technique employed by this new Brown

interpreter is a very close analog to that employed for 3-Lisp as given in [1].
A Brown meta-continuation is essentially an infinite list of continuations.
Meta-continuations are treated as stacks; the only operations performed
on them are pushing and popping continuations from the head of the list.
This is exactly the way the state argument is manipulated by the 3-Lisp
implementation.

The installation of an explicit continuation as an implicit continuation
by pushing it on to the head of the meta-continuation, or the seizure of a pre-
viously implicit continuation by popping it from the meta-continuation, are
the level-shifting operations. When a reifier is invoked, the meta-continuation
is popped once to obtain the reified, explicit continuation that it requires ash
an argument. Invoking a reifier thus shifts up a level in the tower. When a

5"%

KAN *."*~~~ VI]vrw '

%

reified continuation is called, the continuation implicit at the call is pushed
on to the meta-continuation. Invoking an explicit continuation thus shifts
down a level in the tower. Again, this is analogous the way that 3-Lisp
manipulates its state object.

This protocol very neatly deals with all of the embarrassing questions
about where the implicit continuation passed to a reifier comes from, and
what happens to the implicit continuation when an explicit continuation
is invoked. There is a pleasing conservation of continuations. All the de-
sign issues surrounding continuations in the original Brown are resolved in
constructing the tower.

Unfortunately, although this viewpoint is consistent, it can also be con-
fusing. For example, in [7] two different versions of call/cc are defined,
and both are incorrect. The first version is defined as follows:

0-> (set! call/cc
(lambda (f)

((make-reifi r
(lambda (e r k) (k (f k)))))))

0:: #<Procedure CALL/CC>

This version of call/cc passes the continuation k to the procedure f, and -'C.
also calls k on the result, in case f returns normally. To demonstrate its e
behavior we will need to define a procedure exit that shifts up the tower
once:

0-> (set! exit
(lambda Cx)

((make-reifier

(lambda (e r k) x)))))
e

0:: #<Procedure EXIT>

0-> (exit 'foo)
1:: FOO

Having tested exit, we are now ready to try call/cc:

1-> (call/cc (lambda (k) (k '3)))
1:: 3

This seems to be correct, as we still seem to be executing at level 1. lowever,
this assumption is false, as we can test by calling exit twice:

6

IS.

1-> (exit 'bar)
1:: BAR

1-> (exit 'baz)
2:: BAZ
2->

In fact, we were running one level deeper in the tower than the prompt led
us to believe. The problem is that the continuation k had been invoked
twice, once where call/cc did (k (f k)), and once when f did (k '3).
This left two copies of the level 1 loop running, one on top of the other, at
the bottom of the tower.

The second version of call/cc given in [7] would seem to address pre-
cisely this problem:

0-> (set! call/cc

(lambda (f)
((make-reifier

(lambda (e r k) (f k))))))

0:: #<Procedure CALL/CC>

t.Here we avoid calling the continuation k, and simply require the user of
call/cc to always exit by explicitly invoking the continuation he is passed.
Unfortunately this restriction is not quite as simple as it sounds. Consider:

0-> (call/cc (lambda CkO)
(call/cc (lambda (k) (kO '3)))))

0:: 3
0-> (exit 'foo)
2:: FOO

Here ko becomes bound to the level 0 loop which is completely removed
from the meta-continuation. That is, the procedure passed to call/cc is
actually run in the interpreter one level up in the tower. Thus ki becomes
bound to the level 1 loop, which is then lost when kO is invoked at level 2.
This leaves the level 0 loop running directly below the level 2 loop.

A correct implementation of call/cc would not be prone to modifying
the tower as these two implementations do. This is not to say that a correct
implementation of call/cc is impossible in Brown. The 3-Lisp definition
of scheme-catch found in [51 doesn't have these problems, and it seems
likely that the analogous definition would work in Brown as well. Rather,

7

V t

N

p

these difficulties are syniptoniatic of a prol)ein with treating continuations
as primitive level shifters.

A much more straigl~tforward view of continuations, treating them ol
an equal footing with ordinary procedures, would be preferable. Invoking
a continuation, like invoking a procedure, should involve no more than a
transfer of control within the prograin rniiiiing at a. single level. ('outiu-

ations that both transfer control and shift levels imake it difficult to reach
a particular destination witliout arriviug on Ilho wrong level. Level shifting
should not be confused with ordinary transfers of cont rol. If possiblo, tile
two kinds of motion shouh be kept ortlogonal.

One way to address this hrol)lemn would be to imagine that code is (oil-

verting to continuation-passing style [6] belore it is executed. This would
assure that continuations and procedures are treated uniformly, since con-
tinuations are indistinguishable from procedures after such a conversion. In
the next section we shall construct a tower of processors based on this ob-
servation. Since continuations will no longer cause diagonal motion through
the tower, but will remain confined to a single level, it will be necessary to
rely solely on other mechanisms for vertical motion.

4 A simple alternative model: Stepper

Now we turn to the task of demonstrating that the objectionable aspects of 3-
Lisp (and the derivative dialects of Brown) discussed above are not inherent
in the notion of a tower of interpreters. \Ve shall construct a processor tower
in which the levels do not traflic in expressions and environments, and in

which continuations are confined to transfer control within a single level.

One possible way to dispose of expressions and environments would be
to somehow combine the two into a single object. Reifiers, or whatever
passes for reifiers in the new regime, could be passed fully -substituted %
structures. A reifier that in Brown would be passed the expression (car x)
and an environment in which car and x had the values #<Procedure CAR>
and (1 . 2) would instead be passed (soiiething that behaved like) tile

expression ('#<Procedure CAR> '(1 . 2)). This would only be a partial
solution to the Iirobleli, as the tile internal structure of a procedure that
invoked a reifier would still be inad e visible, althotigli not to the extent of
revealing the actual na ies of the identifiers used.

Instead of trying to patch u1) expressions. Stepper dispeises with expres-

sions entirely. This is a bit of a disappoitinent, since my original inotiva -

%

tion for studying 3-Lisp and Brown was to try and discover something about
how fexprs and macros might be tamed. By eliminating expressions from
Stepper's theory of reification, we also eliminate the possibility of learning
anything new about them.

Expressions are a way of describing a program as constructed out of
parts. Programs are made up of if expressions, lambda expressios. etc.
Some processor walks over the program performing some simple actions as
it encounters each kind of expression.

Another way to describe a program is as a collection of simple state
transitions on some register machine. Each state transition calls for the ex-
ecution of a few simple operations on the registers, such as moving data from
register to register, accessing data in structures addressed by registers, and
performing simple arithmetic on the contents of registers. A equally simple
processor can push the register machine from state to state performing the
operations called for by each state transition.

3-Lisp and Brown view programs as expressions to be evaluated; they
break up the execution of a program into a series of calls on eval. Stepper

views programs as a collection of state transitions; it draws a line through a
different part of the interpreter and breaks up program execution into a series
of calls on apply. Since apply is not passed expressions or environments
as arguments, Stepper does not have to handle them at all. Furthermore,
by treating continuations as just another argument to apply, Stepper will
avoid giving continuations any special treatment.

At the heart of Stepper is an evaluator with an important difference:
wherever an ordinary evaluator would apply a procedure to a continuation
and some arguments, or wherever a continuation would be applied to a value,
the Stepper evaluator simply makes a list of these items (called a "tuple")
and returns them. The toplevel dispatch procedure, evaluate, is passed a
continuation, an expression, and an environment:

9

I

(define (evaluate k e r)

((cond ((symbol? e) evaluate-identifier)
((not (pair? e)) evaluate-constant)

(else (case (first e)
((quote) evaluate-quote)

((lambda) evaluate-lambda)

((set!) evaluate-set!)

((if) evaluate-if)

(else evaluate-application))))

ke r))

Unlike Brown and 3-Lisp, Stepper lacks the)rol)erty that new special

forms can be defined from within the language. Thus all of the special forms
of Stepper have dispatch entries in evaluate. This is the price we pay for
giving up reifiers that manipulate expressions and environments.

Identifiers are evaluated by looking them up in the environment and

returning a tuple of the continuation and the value (a complete listing of

Stepper, including various utility procedures such as get-value, appears as
an appendix):

(define (evaluate-identifier k e r)

(list k (get-value e r)))

The returned tuple indicates that the nea't stcp to take in the computation

is to apply the first element of the tuple (the continuation) to the rest of lhe

elements of the tuple (the value).

Lambda-expressions are evaluated similarly. A tuple is returned that
indicates that the next step is to invoke the continuation on an appropriate

procedure:

(define (evaluate-lambda k e r)

(define (procedure k1 . vals)

(evaluate k1
(third e)

(extend r (second e) vals)))

(list k procedure))

Evaluate-lambda reveals that a Stepper procedure is represented using a

Scheme procedure that takes an additional first arguient, a continuation.
When that Scheme procedure is invoked it will return withi the next step inI

the computation.

Finally, here is the code for evaluating an application:

10

(define (evaluate-application k e r)
(define (eval-function-continuation f)
(define (loop args vals)

(define (eval-arg-continuation val)

(loop (cdr args) (cons val vals)))
(if (null? args)

(list* f k (reverse vale))
(evaluate eval-arg-continuation

(first args)

r)))

(loop (rest e) '0))
(evaluate eval-function-continuation

(first e)
r))

This is nothing more that the ordinary function and argument evaluation
loop, except that like everything else in the Stepper evaluator, it is careful
to return a tuple whenever an ordinary evaluator would call apply.

Given one of the tuples returned by evaluate, one can advance the
computation a single step by applying the first element to the rest of the
tuple, obtaining a new tuple in return. A loop like

(define (run-loop tuple)

(run-loop (apply (first tuple) (rest tuple))))

is all that is needed drive the computation forward. (Run-loop is not actu-
ally used by Stepper.)

It is important to realize that the amount of computation performed on

each trip through run-loop is small and bounded. This is a consequence
of the fact that the Stepper evaluator is really converting the source code
expression into continuation-passing style on the fly.

Each tuple can be tiought of as the current contents of the machine's
registers. On each tick the contents of the first register are used to deter-
mine bow to update the registers. lBY convention, a procedure is invoked

by loading it into the first register, loading a continuation into the second
register, and loading its arguments into the following registers. A continua-
tiot is invoked by loading it into the first register, and loading the value to
return into the second register.

The operations performed by a. procedure (or continuation) before it
yields the processor to the next procedure are extremely limited. Registers

11

can be loaded with (1) a constant, (2) the original contents of another regis-
ter, yj) a value retrieved from the procedure's environment, (4) some simple
function of values obtained in those ways, or (5) a newly created procedure.
Newly created procedures are given environments drawn from the running
procedure's environment and the original registers. Each register is only
loaded once in one of these ways. The resulting set of possible stepping

V behaviors is not significantly more complex than some machine instruction
sets.

To build a tower of processors the user of Stepper needs some way to
shift between, levels. The two procedures procedure->implementation and
implementation->procedure exist for this purpose. The "implementation"
of a procedure is another procedure, which describes the operations to be
performed on the registers of the machine when that procedure is invoked.
Not surprisingly, this is exactly what the Scheme procedures which represent
Stepper procedures do. Procedure->implementation can be used within
Stepper to single-step a computation, as the following dialog illustrates:

-> (set! inc (lambda (n) (+ n 1)))
#<Procedure INC>

-> (inc 3)

4
-> ((procedure->implementation inc) 'k 3)
(#<Eval-Function-Continuation 100553466>

#<Procedure "+">)

The procedure inc adds one to its single argument, but the implementation
of inc takes two arguments, a continuation and a number, and returns a
tuple representing the next step to perform in evaluating such a call to inc.
By repeatedly calling implementations, we can step our way through the
computation. For example, consider the following useful debugging tool:

-> (set! step-until

(lambda (stop tuple)
((lambda (tuple)

(if (eq? stop (first tuple))
tuple
(step-until stop tuple)))

(apply (procedure->implementation (first tuple))

(rest tuple)))))
#<Procedure STEP-UNTIL>

12

' .

- - - - -- - - - - - - - - - - - - - - -

I-

Step-until takes a tuple representing a computation and a procedure to
trap calls to. The computation is stepped until that procedure is about
to be invoked, at which point step-until returns the current tuple for
examination.

-> (set! fact

(lambda (n)
(if (< n 2)

1
(* (fact (- n)) n))))

#<Procedure FACT>
-> (fact 5)
120
-> (step-until * (list fact 'k 5))

C#<Procedure "*"> #<Eval-Arg-Continuation 63365247> 1 2)

Here we have advanced the computation of (fact 5) until the very first
time the procedure * is invoked. We can continue in this way until the
symbol k, which was supplied as the initial continuation, reappears:

-> (step-until * 7.)
." (#<Procedure "*"> #<Eval-Arg-Continuation 63365271> 2 3)

-> (step-until * .)
(#<Procedure "*"> #<Eval-Arg-Continuation 63364542> 6 4)

-> (step-until * %)
C#<Procedure "*"> K 24 5)
-> (step-until 'k 7.)
(K 120)

(The variable % is bound to the previous value by the Stepper toplevel loop.)
The procedure implementation->procedure exactly reverses the effect

of procedure->implementation. This allows the Stepper programmer to
implement procedures by specifying their step-by-step behavior in terms of
tuples. For example, here is the definition of call/cc in Stepper:

-> (set! call/cc

(implementation->procedure
(lambda (k f)

(list f k (implementation->procedure

(lambda (ignored-k v)
(list k v))))

#<Procedure CALL/CC>

13

W

The implementation of call/cc specifies precisely how to be step a tuple
whose first element is call/cc. The first argument is to be invoked as
a procedure with the same continuation as was given to call/cc. It is
to be passed a single argument, which is also a procedure whose behavior
is specified by giving an implementation. That procedure is to ignore its
continuation, and return the value it is given to the original continuation.

An arbitrary procedure can be passed as an implementation to imple-
mentation->procedure. The only requirement is that it return a valid tuple
(if it returns at all). This implementation procedure will be run on the next
level up of the tower of processors we are constructing. By calling imple-
mentation->procedure enough times, a procedure can be generated that
does its work arbitrarily far up in the tower.

The procedures implementation->procedure and procedure->imple-
mentation themselves are not very exciting. They simply tag or untag
their argument as appropriate so that other Stepper primitives can recognize
them:

(define (make-implementation proc)
(list 'implementation proc))

,.J

(define (implementation? imp)
(and (pair? imp)

(eq? (car imp) 'implementation)))

(define implementation-procedure cadr)

(define (make-implemented-procedure imp)

(list 'implemented-procedure imp))

(define (implemented-procedure? proc)
(and (pair? proc)

(eq? (car proc) 'implemented-procedure)))

(define procedure-implementation cadr)

14

(m

(define (procedure->implementation proc)
(if (implemented-procedure? proc)

(procedure-implementation proc)
(make-implementation proc)))

(define (implementation->procedure imp)
(if (implementation? imp)

(implementation-procedure imp)
(make-implemented-procedure imp)))

Toplevel continuations are produced by make-toplevel-continuation:

(define (make-toplevel-continuation prompt)
(define (toplevel-continuation val)

(newline) (write val)
(newline) (display prompt)
(evaluate toplevel-continuation

(read)
(extend '() '() (list val))))

toplevel-continuation)

0 This is the only procedure that calls into the evaluator. All of Stepper
could be reconstructed around any other theory of simple transformations
on tuples, and only this procedure and the evaluator would need to be
changed.

One other continuation is particularly important:

(define (omega tuple)

(list* (procedure->implementation (first tuple))

omega

(rest tuple)))

When this continuation is given a tuple, it goes into an infinite loop stepping
that tuple. All levels of the tower above the first will initially be executing
this loop; every level of the tower will be stepping the level below.

Of course there is no need to actually perform an infinite amount of
stepping. We really only need to find the highest level that is engaged in
some other activity, and run it directly. This leads to the following set of
tricks:

(define (run)
(find-level-loop

(list (make-toplevel-continuation "-> ") '*)))

15

I-

This is the procedure used to start Stepper running. It simply calls find-
level-loop with an initial tuple. Instead of

(list (make-toplevel-continuation "-> ") '*)

the initial tuple could be

(list omega
(list (make-toplevel-continuation "-> ")

' *))

or even

(list omega

(list omega
(list (make-toplevel-continuation "-> ")

for in some sense the initial tuple is really the limit of this sequence of tuples.
But it doesn't make any practical difference, since find-level-loop is only
interested in finding the first tuple from the top whose head is something
other than omega:

(define (find-level-loop tuple)
(let ((head (first tuple)))

(cond ((eq? head omega) ;

(find-level-loop (second tuple)))
((implemented-procedure? head)
(find-level-loop

(list* (procedure-implementation head)
omega
(rest tuple))))

(else

(find-level-loop
(step-loop head (rest tuple)))))))

Having found a tuple headed by something other than omega, find-level-
loop checks for procedures created by implementation->procedure. Such
procedures are run one level up in the tower, so find-level-loop shifts back
up a level and provides a continuation of omega. A look at the definition
of omega will reveal that this is exactly the same behavior as would have
resulted if the omega-headed tuple at the level above had been run directly.

Finally, having shifted to the level where the action is, find-level-loop
calls step-loop:

16
4]

/ '

(define (step-loop head more)
(if (implementation? head)

(list (first more)

(step-loop (implementation-procedure head)
(rest more)))

(apply head more)))

Step-loop simply produces the next tuple appropriate for the level at which
it is invoked. In cases where the head of the current tuple was produced
by procedure-> implementation, step-loop recovers the original proce-
dure, steps it once, and then passes the resulting tuple to the continuation.
Otherwise step-loop simply calls apply.

Note that I have not provided each level of the tower with its own toplevel
loop. In fact, I have been unable to devise a clean way to do so. I suspect
that this is an artifact of the elimination of level-shifting continuations, but
I do not understand why this should be the case.

5 Observations
Having now constructed a tower of processors, it is natural to wonder if the

result has any intrinsic utility. It wasn't a really a design goal that Stepper be
useful for anything; I was only interested in demonstrating that it is possible
to construct a tower free from reified expressions and environments, and free
of level-shifting continuations. The Stepper tower retains one of the most
useful properties of the 3-Lisp tower: the ability to implement transparent
debugging utilities. The procedure step-until, demonstrated above, is an
example of such a utility.

The utility of stepping is enhanced by the ability to define procedures
that behave atomically. For example, we can define a version of the factorial
function that does its computation one level up in the tower, and works in
a single step at the level where it was called:

17

p

-> (set! atomic-fact
(implementation->procedure
(lambda (k n) Li

(list k (fact n)))))
#<Procedure ATOMIC-FACT>
-> (atomic-fact 7)
5040
-> ((procedure->implementation fact) 'k 7)
(#<Eval-Function-Continuation 54513442>
#<Procedure "<">)

-> ((procedure->implementation atomic-fact) 'k 7)

(K 5040)
-> ((procedure->implementation cdr) 'k ;(a b c))I
(K (B C))

Atomic-fact is just as good at computing factorials as fact was. The
difference is that anyone stepping through any code that calls atomic-fact
will see it do all of its work in a single step, just as if it were a built-in
primitive. (Of course one more level up the tower someone stepping through
the code that is stepping the call to atomic-fact will see atomic-fact
broken up into more primitive steps.) Thus implementation->procedure
can be used to provide a kind of limited abstraction; only those steps of a
computation that the programmer is interested in need be revealed.

Stepper, as it exists now, lacks effective tools for examining the elements
of tuples. Procedure->implementation can be used to break a complex
procedure down into a series of atomic steps, but no tools are provided
for examining those atomic steps in further detail. These atomic steps are
simple transformations on tuples, as explained above, so in theory this isn't
a hard job. In practice, the design of a description language for atomic steps
requires a more detailed construction than is appropriate here.

The techniques employed by find-level-loop to implement the Stepper
tower are taken more or less directly from the implementation of 3-Lisp given

in [1]. In particular, the continuation omega is given special-case treatment
similar to that given to normalize in 3-Lisp. It is interesting that neither

version of Brown required such implementation tricks. I suspect that this is
because Brown has no effective way of decomposing a procedure, as there
are in 3-Lisp and Stepper, and so the only thing that can be done wiLh a
procedure is to directly run it. Thus there is no need to ever optimize the
indirect execution of a Brown procedure. This makes me ur supc-t

18 I

A *; |

that the denotational semantics developed in [7] might be more difficult if
decomposition of Brown procedures was allowed. In fact, I do not see how
to construct a denotational description of the Stepper tower.

The most important thing about Stepper is that it demonstrates that the~notion of a tower of processors can be separated fromi tlhe mechancs of an

evaluator. Such evaluator artifacts as expressions, environments, and con-
tinuations can be confined within the boundaries of single levels, and a much
simpler mechanism can be used to manage the - Aeractions between levels.
Stepper achieves this separation by choosing a representation for the state
of a process (the tuple) in which the entire state is explicitly represented.

In contrast, the state of a 3-Lisp process is partly implicit in the state of
the superior 3-Lisp process. The state of a 3-Lisp process can only be un-
derstood by knowing exactly where in the interpreter the superior process is
currently executing. This confusion of levels is what results in level-shifting
continuations. By representing all the state of a computation explicitly,
St, pper avoids this confusion.

Stepper reveals that once an appropriate representation of processor
state has been chosen, the construction of a processor tower is quite straight-
forward. Processor towers might be easily constructed for a wide variety of

6' (systems to enable them to manipulate and reason about themselves. The
problem of constructing a well-disciplined tower thus reduces to designing a
representation in which the entire state of a process is explicitly represented,
which is difficult, and then constructing the tower, which as we have seen is
relatively easy.

References

[1] J. des Rivibres and B. C. Smith. The implementation of procedurally
reflective languages. In Proc. Symposium on Lisp and Functional Pro-
gramming, pages 331-347, ACM, August 1984.

[2] D. P. Friedman and M. Wand. Reification: Reflection without meta-
physics. In Proc. Symposium on Lisp and Functional Programming,
pages 348-355, ACM, August 1984.

[3] Jonathan Rees and William Clinger. Revised3 Report on the Algorithmic
Language Scheme. Memo 848a, MIT Al Lab, September 1986.

[4] B. C. Smith. Reflection and Semantics in a Procedural Language.
TR 272, MIT LCS, January 1982.

19

[5] B. C. Smith. Reflection and semantics in Lisp. In Proc. Symposium
on Principles of Programming Languages, pages 23-35, ACM, January
1984.

[6] Guy L. Steele Jr. LAMBDA: The Ultimate Declarative. Memo 379, MIT
Al Lab, November 1976.

[7] M. Wand and D. P. Friedman. The mystery of the tower revealed: a
non-reflective description of the reflective tower. In Proc. Symposizum on
Lp and Functional Programming, pages 298-307, ACM, August 1986.

Appendix: Stepper

The evaluator

(define (evaluate k e r)
((cond ((symbol? e) evaluate-identifier)

((not (pair? e)) evaluate-constant)
(else (case (first e)

((quote) evaluate-quote)

((lambda) evaluate-lambda)
((set!) evaluate-set!)
((if) evaluate-if)

(else evaluate-application))))
k e r))

(define (evaluate-identifier k e r)

(list k (get-value e r)))

(define (evaluate-constant k e r) (list k e))

(define (evaluate-quote k e r) (list k (second e)))

(define (evaluate-lambda k e r)

(define (procedure k1 . vals)
(evaluate k1

(third e)
(extend r (second e) vals)))

(list k procedure))

20

N4

(define (evaluate-set! k e r)

(define (set!-continuation val)
(set-value (second e) val r)
(list k val))

(evaluate set!-continuation (third e) r))

(define (evaluate-if k e r)
(define (if-continuation val)

(evaluate k ((if val third fourth) e) r))
(evaluate if-continuation (second e) r))

(define (evaluate-application k e r)
(define (eval-function-continuation f)
(define (loop args vals)

(define (eval-arg-continuation val)
(loop (cdr args) (cons val vale)))

(if (null? args)

(list* f k (reverse vale))
(evaluate eval-arg-continuation

(first args)
r))

(loop (rest e) '0))
(evaluate eval-function-continuation (first e) r))

Important continuations

(define (make-toplevel-continuation prompt)

(dc ine (toplevel-continuation val)

(newline) (write val)
(newline) (display prompt)
(evaluate toplevel-continuation

(read)

(extend '() 'I) (list val))))
toplevel-continuation)

(define (omega tuple)

(list* (procedure->implementation (first tuple))
omega
(rest tuple)))

21

Au %P

P

4i

Stepper toplevel loop

(define (run)

(find-level-loop

(list (make-toplevel-continuation ">" *)

(define (find-level-loop tuple)

(let ((head (first tuple)))

(cond ((eq? head omega)

(find-level-loop (second tuple)))((implemented-procedure? head)

(find-level-loop
(list* (procedure-implementation head)

omega
(rest tuple))

(else(find-level-loop

(step-loop head (rest tuple)))))))

HEAD is known not to be an implemented procedure

(define (step-loop head more)
!'

(if (implementation?
head)

(list (first more)
(step-loop (implementation-procedure head)

(rest more)))

(apply head more)))

.4

22J

............

- .S-"..

Environments

(define global-environment '0)

(define (extend r ids vals)

(cond ((null? ids) r)
((not (pair? ids)) (cons (cons ids vals) r))
(else (extend (cons (cons (car ids)

(car vals))
r)

(cdr ids)
(cdr vals)))))

(define (get-value id r)
(cdr (get-pair id r)))

(define (set-value id val r)
(set-cdr! (get-pair id r) val)
val)

(define (get-pair id r)
(or (assq id r)

(assq id global-environment)
(let ((pair (cons id undefined)))

(set! global-environment
(cons pair global-environment))

pair)))

23

.5',

'S.

p6

Set up the initial global environment

(define (exportable-apply k cvt-proc args)
(list* cvt-proc k (apply list* args)))

(define (convert-p cedure f)
(define (converted-procedure k . args)

(list k (apply f args)))
converted-procedure)

(define (initialize-global-environment)

(set! global-environment

(append
(map cons

'(apply omega)

(list exportable-apply omega))
(map (lambda (id proc)

(cons id (convert-procedure proc)))
'(cons list car cdr eq?+ -*/=> <

first second third fourth rest
implementation->procedure
procedure->implementation
make-toplevel-continuation

(list cons list car cdr eq?

first second third fourth rest
implementation->procedure

procedure->implementation
make-toplevel-continuation

#t)

(initialize-global-environment)

24

*.%

Converting between implementations and procedures

(define (make-implementation proc)

(list 'implementation proc))

(define (implementation? imp)
(and (pair? imp)

(eq? (car imp) 'implementation)))

(define implementation-procedure cadr)

(define (make-implemented-procedure imp)
(list 'implemented-procedure imp))

(define (implemented-procedure? proc)
(and (pair? proc)

(eq? (car proc) 'implemented-procedure)))

(define procedure-implementation cadr)

(define (procedure->implementation proc)
(if (implemented-procedure? proc)

(procedure-implementation proc)
(make-implementation proc)))

(define (implementation->procedure imp)
(if (implementation? imp)

(implementation-procedure imp)

(make-implemented-procedure imp)))

25

5I

4 - I

Various utilities

(define (list* head tail)
(if (null? tail)

head
(cons head (apply list* tail))))

(define first car)
(define second cadr)
(define third caddr)
(define fourth cadddr)
(define rest cdr)

(define undefined (list '* 'undefined '*))
(define (undefined? v) (eq? v undefined))

26

:7 r r ne-..f%.
_-U %5d'A

ak

qS

0

_b.

ANA

ii

I

